欢迎光临
我们一直在努力

spark mllib中如何实现朴素贝叶斯算法

这篇文章主要介绍了spark mllib中如何实现朴素贝叶斯算法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

数据源说明

第一列每行的标签,其他列为特征

运行代码如下

package spark.logisticRegression

import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.{SparkConf, SparkContext}

/**
  * 分类 - 朴素贝叶斯简单示例
  * 后验概率 = 先验概率 x 调整因子
  * Created by eric on 16-7-18.
  */
object Bayes {
  val conf = new SparkConf()                                     //创建环境变量
    .setMaster("local")                                             //设置本地化处理
    .setAppName("Bayes")                              //设定名称
  val sc = new SparkContext(conf)

  def main(args: Array[String]) {
    val data = MLUtils.loadLabeledPoints(sc, "./src/main/spark/logisticRegression/bayes.txt")
    val model = NaiveBayes.train(data, 1.0)
    model.labels.foreach(println)//打印 label(labels是标签类别)
    model.pi.foreach(println)//打印先验概率 (pi存储各个label先验概率)
    //0.0
    //1.0
    //2.0
    //-1.0986122886681098
    //-1.0986122886681098
    //-1.0986122886681098
    val test = Vectors.dense(0, 0, 10)//新预测数据
    val result = model.predict(test)//预测结果
    println(result)//2.0
  }
}

bayes.txt

0,1 0 0
0,2 0 0
1,0 1 0
1,0 2 0
2,0 0 1
2,0 0 2

结果如图

感谢你能够认真阅读完这篇文章,希望小编分享的“spark mllib中如何实现朴素贝叶斯算法”这篇文章对大家有帮助,同时也希望大家多多支持云搜网,关注云搜网行业资讯频道,更多相关知识等着你来学习!

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。