欢迎光临
我们一直在努力

让tersorflow利用GPU飞起来-MX150

在深度学习训练的时候使用GPU而不是CPU我想已经是不争的事实了,虽然MX150并不在下面的官网列表,但是其实MX150也是支持CUDA的。

https://developer.nvidia.com/cuda-gpus

环境

小米笔记本Air 13

  • OS: win10
  • CPU: I7 7500U
  • GPU: MX150
  • GPU驱动: 425.25
  • tensorflow: 1.13.1
  • tensorflow-gpu: 1.13.1
  • visual studio: 2019

安装TensorFlow

现在TensorFlow的whl文件已经打包的非常好了,基本上是可以安装上的,但是如果没有CUDA之类的驱动的话,在导入tensorflow的时候会报错。

pip install tensorflow tensorflow-gpu

安装依赖

为了装上英伟达的CUDA套件还需要安装visual studio, 因为windows的相关编译环境跟visual studio绑在了一起,即使你只想装其中一部分,还是得装上visual studio

安装visual studio

而windows的安装程序不会太难,就是下一步,下一步。

安装 cuda toolkits

CUDA toolkits 10.0

https://developer.nvidia.com/cuda-zone

默认安装即可,下一步下一步。

安装cudnn

cudnn 7.6.0.64

https://developer.nvidia.com/cudnn

注意千万不要贪最新的版本,tensorflow官方不一定支持!

cudnn解压后放在C:\tools\cuda

最后加入环境变量:

C:\tools\cuda\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPTI\lib64

官方说明如下:

软件要求

必须在系统中安装以下 NVIDIA® 软件:
NVIDIA® GPU 驱动程序 – CUDA 10.0 需要 410.x 或更高版本。

CUDA® 工具包 – TensorFlow 支持 CUDA 10.0(TensorFlow 1.13.0 及更高版本)

CUDA 工具包附带的 CUPTI。
cuDNN SDK(7.4.1 及更高版本)
(可选)

TensorRT 5.0,可缩短在某些模型上进行推断的延迟并提高吞吐量。

参考页面:
https://www.tensorflow.org/install/gpu

各个版本的兼容测试情况
https://www.tensorflow.org/install/source#linux

安装参考:

https://towardsdatascience.com/installing-tensorflow-with-cuda-cudnn-and-gpu-support-on-windows-10-60693e46e781

https://medium.com/@johnnyliao/%E5%9C%A8nvidia-mx150%E7%9A%84win10%E5%AE%89%E8%A3%9Dcuda-toolkit-cudnn-python-anaconda-and-tensorflow-91d4c447b60e

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。