欢迎光临
我们一直在努力

Python Pandas中DataFrame.drop_duplicates()怎么删除重复值

这篇“Python Pandas中DataFrame.drop_duplicates()怎么删除重复值”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python Pandas中DataFrame.drop_duplicates()怎么删除重复值”文章吧。

语法

df.drop_duplicates(subset = None,
                   keep = 'first', 
                   inplace = False, 
                   ignore_index = False)

参数

1.subset:指定的标签或标签序列,仅删除这些列重复值,默认情况为所有列

2.keep:确定要保留的重复值,有以下可选项:

first:保留第一次出现的重复值,默认

last:保留最后一次出现的重复值

False:删除所有重复值

3.inplace:是否生效

4.ignore_index:如果为True,则重新分配自然索引(0,1,…,n – 1)

# 删除重复值 DataFrame.drop_duplicates()
import pandas as pd
 
df = pd.DataFrame([['x','x',1],['x','x',1],['z','x',2]], columns = ['A','B','C'])
 
# 删除重复行
res1 = df.drop_duplicates()
 
# 删除指定列
res2 = df.drop_duplicates(subset = ['A'])
 
# 保留最后一个
res3 = df.drop_duplicates(subset = ['A'], keep = 'last')

结果展示

df

res1

res2

res3

扩展:识别重复值

import pandas as pd
 
df = pd.DataFrame({
    'studentID':['A001','A002','A003','A004','A005','A006','A006'],
    'score':[100,93,94,96,93,95,95]})
 
# 识别重复值
duplicate_value = df[df.duplicated()]

df

由上图可知studentID为'A006'的记录有两条,我们可以使用duplicated()方法识别重复值,它返回的是布尔值结果(True:有重复值,False:无重复值)

duplicate_value

以上就是关于“Python Pandas中DataFrame.drop_duplicates()怎么删除重复值”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注云搜网行业资讯频道。

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。