欢迎光临
我们一直在努力

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选遍历的方法”文章能帮助大家解决问题。

一、条件筛选

查询Pandas Dataframe数据时,经常会筛选出符合条件的数据,接下来介绍一下具体的使用方式。

示例Dataframe如下:

单条件筛选,例如查询gender为woman的数据:

df[df["gender"]=="woman"]
# 或
df.loc[df["gender"]=="woman"]

使用isin()函数筛选,例如查询age为24、28的数据:

df[df["age"].isin([24,28])]

当有多个过滤条件时,可以使用逻辑操作符&|,如下。

例如:查询gender为“woman”并且city为“shanghai”的数据:

df[(df["gender"]=="woman") & (df["city"]=="shanghai")]

查询age大于25或者gender为“woman”的数据:

df[(df["age"]>25) | (df["gender"]=="woman")]

注意:逻辑操作符两边的过滤条件必须使用小括号()括起来,否则会报错或者不起作用。

波浪线符~可以取指定条件相反的数据,例如查询city不为“beijing”的数据:

df[~(df["city"]=="beijing")]

二、Dataframe数据遍历

for…in…语句

因为 Dataframe 对象属于可迭代对象,所以可以使用for...in...语句进行遍历,遍历结果是列的名称,如下:

for i in df:
    print(i)

结果输出如下:

如果要遍历 DataFrame 的行数据,需要使用以下方法:

iteritems()方法

iteritems()方法是按列进行遍历,遍历结果为为(列名, value)键值对:

for column, value in df.iteritems():
    print(column)
    print(value)

iterrows()方法

 iterrows()方法是按行进行遍历,遍历结果为(index, value)键值对:

for index, row in df.iterrows():
    print(index)
    print(row)

itertuples()方法

itertuples()是以namedtuples(命名元组)形式遍历行,遍历每一行为一个命名元组:

for row in df.itertuples():
    print(row)

关于“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注云搜网行业资讯频道,小编每天都会为大家更新不同的知识点。

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。