欢迎光临
我们一直在努力

如何描述茎叶,背靠背茎叶怎么看

目录 0引言1、包的安装和载入2、数据的构造3、参数展示4、案例结果5、参考文献

0引言

在R语言绘制茎叶图——stem函数1中介绍了茎叶图的定义好处以及R语言中画茎叶图的函数stem。但是在实际中还会遇到两组数据同时画茎叶图。这时候就需要比较茎叶图或者成为背靠背茎叶图。本节就讲一下R语言中背靠背茎叶图的画法。

1、包的安装和载入

画背靠背茎叶图需要的函数是:stem.leaf.backback。源于的包是:aplpack。
下面是安装载入包的命令:

install.packages(“aplpack”) # 安装包的命令library(aplpack) # 载入包的命令 2、数据的构造 > (x = runif(50, 1, 100)) [1] 97.901902 37.820087 59.930394 58.202214 85.082559 56.376457 49.612133 [8] 28.449198 17.474669 73.544891 71.132914 67.087604 73.442675 31.118839[15] 34.445926 91.496676 68.495679 2.406950 32.371289 76.785241 70.970913[22] 18.389529 79.589323 85.889009 69.590363 77.410272 59.683459 53.642310[29] 10.430487 53.923313 36.867875 27.919024 43.048420 54.681581 52.346770[36] 86.392272 80.799613 45.936351 48.592536 49.247514 26.132459 28.316900[43] 33.084321 41.899637 82.897304 30.807437 11.529197 87.191910 9.661095[50] 76.181347> (x = round(x)) [1] 98 38 60 58 85 56 50 28 17 74 71 67 73 31 34 91 68 2 32 77 71 18 80 86[25] 70 77 60 54 10 54 37 28 43 55 52 86 81 46 49 49 26 28 33 42 83 31 12 87[49] 10 76> (y = runif(50, 1, 100)) [1] 54.251087 52.491082 56.061653 23.461294 97.432992 59.603256 1.731276 [8] 38.194524 63.233257 34.397358 87.835199 37.768421 4.011068 37.757133[15] 21.456463 70.403779 92.325619 59.801964 7.334659 80.850232 8.878238[22] 41.957840 29.635581 38.141332 58.615335 46.426850 5.792796 84.212648[29] 20.716242 59.697287 90.713955 91.405667 50.688220 96.054148 98.494647[36] 53.005192 75.005535 30.417185 55.437115 55.639084 3.260935 75.850688[43] 87.912788 75.904463 89.966681 71.551502 75.130157 98.808130 34.477216[50] 52.372187> (y = round(x)) [1] 98 38 60 58 85 56 50 28 17 74 71 67 73 31 34 91 68 2 32 77 71 18 80 86[25] 70 77 60 54 10 54 37 28 43 55 52 86 81 46 49 49 26 28 33 42 83 31 12 87[49] 10 76

到现在为止就成功载入函数包、构造出了两组可用数据。下开始介绍主角函数了:stem.leaf.backback

3、参数展示 > stem.leaf.backbackfunction (x, y, unit, m, Min, Max, rule.line = c(“Dixon”, “Velleman”, “Sturges”), style = c(“Tukey”, “bare”), trim.outliers = TRUE, depths = TRUE, reverse.negative.leaves = TRUE, na.rm = FALSE, printresult = TRUE, show.no.depths = FALSE, add.more.blanks = 0, back.to.back = TRUE)

上述是该函数的内置可调参数,大家有需要可以自行去查看。下面直接上案例。

4、案例结果

下面就是最初的背靠背茎叶图。

> stem.leaf.backback(x,y) _______________________________ 1 | 2: represents 12, leaf unit: 1 x y _______________________________ 1 2| 0* |2 1 | 0. | 4 200| 1* |002 4 6 87| 1. |78 6 | 2* | 10 8886| 2. |6888 10 15 43211| 3* |11234 15 17 87| 3. |78 17 19 32| 4* |23 19 22 996| 4. |699 22 (4) 4420| 5* |0244 (4) 24 865| 5. |568 24 21 00| 6* |00 21 19 87| 6. |78 19 17 43110| 7* |01134 17 12 776| 7. |677 12 9 310| 8* |013 9 6 7665| 8. |5667 6 2 1| 9* |1 2 1 8| 9. |8 1 | 10* | _______________________________n: 50 50 _______________________________

我们对参数进行微调:m = 1.

> stem.leaf.backback(x,y,m=1) ____________________________________ 1 | 2: represents 12, leaf unit: 1 x y ____________________________________ 1 2| 0 |2 1 6 87200| 1 |00278 6 10 8886| 2 |6888 10 17 8743211| 3 |1123478 17 22 99632| 4 |23699 22 (7) 8654420| 5 |0244568 (7) 21 8700| 6 |0078 21 17 77643110| 7 |01134677 17 9 7665310| 8 |0135667 9 2 81| 9 |18 2 | 10 | ____________________________________n: 50 50 ____________________________________ 5、参考文献


https://blog.csdn.net/weixin_46111814/article/details/105343016 ??

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。