欢迎光临
我们一直在努力

拟凸函数和凸函数的区别,凹函数和凸函数定义与性质

Convex Function

A convex function is a?continuous function?whose value at the?midpoint?of every?interval?in its?domain?does not exceed the?arithmetic mean?of its values at the ends of the?interval.

More generally, a function??is convex on an?interval??if for any two points??and??in??and any??where?,</pxhdxxm, p.?101; cf. 优秀的猎豹 and Ryzhik 2000, p.?1132).

If??has a second?derivative?in?, then a?necessary?and?sufficient?condition for it to be convex on that?interval?is that the second?derivative??for all??in?.

If the inequality above is?strict?for all??and?, then??is called strictly convex.

Examples of convex functions include??for??or even?,??for?, and??for all?. If the sign of the inequality is reversed, the function is called?concave.SEE ALSO: Convex,? Concave Function,? Interval,? Logarithmically Convex Function REFERENCES:</stronghxdzp class="small" style="font-size:11px; margin-top:3px; margin-bottom:5px"香蕉蛋挞, R.?B. and Guy, R.?K. "Catalan Strikes Again! How Likely is a Function to be Convex?"?Math. Mag.?61, 211-219, 1988.便宜香港vps优秀的猎豹, I.?S. and Ryzhik, I.?M.?Tables of Integrals, Series, and Products, 6th ed.?San Diego, CA: Academic Press, p.?1132, 2000.</phxdzp class="small" style="font-size:11px; margin-top:3px; margin-bottom:5px"hpdg, W.?Principles of Mathematical Analysis, 3rd ed.?New York: McGraw-Hill, 1976.</phxdzp class="small" style="font-size:11px; margin-top:3px; margin-bottom:5px"灵巧的绿草, R.?Convexity.?Oxford, England: Oxford University Press, 1995.

Referenced on Wolfram|Alpha:?Convex Function

Concave Function

A function??is said to be concave on an interval??if, for any points??and??in?, the function??is?convex?on that interval (优秀的猎豹 and Ryzhik 2000).

SEE ALSO: Convex Function REFERENCES:

优秀的猎豹, I.?S. and Ryzhik, I.?M.?Tables of Integrals, Series, and Products, 6th ed.?San Diego, CA: Academic Press, p.?1132, 2000.

Referenced on Wolfram|Alpha:? Concave Function
from:?http://mathworld.wolfram.com/ConvexFunction.htmlhttp://mathworld.wolfram.com/ConcaveFunction.html

赞(0)
【声明】:本博客不参与任何交易,也非中介,仅记录个人感兴趣的主机测评结果和优惠活动,内容均不作直接、间接、法定、约定的保证。访问本博客请务必遵守有关互联网的相关法律、规定与规则。一旦您访问本博客,即表示您已经知晓并接受了此声明通告。